# МАШИНА РАЗРЫВНАЯ ДЛЯ ИСПЫТАНИЯ МАТЕРИАЛОВ ИР-5046-0,5

Техническое описание PM 5.2055.12.01. ТО

## СОДЕРЖАНИЕ

|     |                                                 | лист |
|-----|-------------------------------------------------|------|
| 1.  | Назначение                                      | 5    |
| 2.  | Основные технические данные и характеристики .  | 5    |
| 3.  | Комплект поставки                               | 6    |
| 4.  | Устройство и принцип работы                     | 7    |
| 5.  | Указания мер безопасности                       | 9    |
| 6.  | Порядок работы                                  | 10   |
| 7.  | Техническое обслуживание                        | 11   |
| 8.  | Порядок установки                               | 13   |
| 9.  | Методы и средства поверки                       | 14   |
| ПРИ | иложения                                        |      |
| 1.  | Кинематическая схема машины ИР 5046-0,5         | 20   |
| 2.  | Схема электрическая принципиальная ИР 5046-0,5. | 21   |
| 3.  | Устройство для направления подвижной траверсы.  | 23   |
| 4.  | Схема смазки машины ИР 5046-0,5                 | 24   |
| 5.  | Клиноременная передача привода                  | 25   |
| 6.  | Схема строповки                                 | 26   |



Рисунок 1 – Общий вид машины ИР 5046-0,5

1 – устройство нагружающее; 1а – пульт управления; 2 – шкаф управления; 2а – панель управления

#### 1 НАЗНАЧЕНИЕ

Машина разрывная для испытания материалов ИР 5046-0,5 (в дальнейшем - машина) предназначена для испытания на растяжение образцов из черных и цветных металлов, а так же пластмасс, при нормальной температуре.

Предусмотрена возможность проведения на машине испытаний на сжатие, изгиб, а также других видов испытаний по согласованию с заказчиком.

Машина предназначена для работы в помещениях лабораторного типа.

#### 2 ОСНОВНЫЕ ТЕХНИЧЕСКИЕ ДАННЫЕ И ХАРАКТЕРИСТИКИ

- 2.1 Наибольшая предельная нагрузка 5000 Н (500 кгс).
- 2.2 Скорость рабочего хода активного захвата от 2 до 1000 мм/мин.
- 2.3 Цена деления шкалы измерителя скорости движения активного захвата: 0,01 мм/мин.
- 2.4 Пределы допускаемого значения относительной погрешности измерителя скорости движения, при рабочем ходе активного захвата, + 5%.
- 2.5 Скорость холостого хода активного захвата (обратный ход) 1000 мм/мин.
  - 2.6 Тип силоизмерителя тензорезисторный.
  - 2.7 Диапазоны измерения нагрузки:
    - 1 от 50 до 500 Н;
    - 2 от 500 до 5000 Н.
- 2.8 Пределы допускаемого значения относительной погрешности силоизмерителя при прямом ходе (нагружении) +1%.
- 2.9 Размах показаний машины в диапазоне измерения не должен превышать 1% измеряемой нагрузки.
- 2.10 Номинальная цена единицы наименьшего разряда цифрового отсчетного устройства измерителя перемещения активного захвата 0,012 мм.

- 2.11 Пределы допускаемой абсолютной погрешности измерителя перемещения, мм:
  - в диапазоне 0÷50 мм

 $\pm 0.1$ 

- в диапазоне 50÷1000 мм

 $\pm 1$ 

- 2.12 Высота рабочего пространства при испытании на растяжение, включая рабочий ход активного захвата, максимум 1000 мм.
  - 2.13 Ширина рабочего пространства между стойками 400 мм.
  - 2.14 Общая потребляемая мощность, не более 0,8 кВт.
  - 2.15 Габаритные размеры, мм, не более:

#### машины:

-длина - 850

-ширина - 645

-высота — 2080

шкафа управления:

-длина - 700

-ширина - 600

-высота - 820

2.16 Масса машины 330 кг;

Масса шкафа управления 280 кг.

#### 3 КОМПЛЕКТ ПОСТАВКИ

| №<br>п/<br>п | Наименование                    | Тип | Кол-<br>во |
|--------------|---------------------------------|-----|------------|
| 1.           | Разрывная машина в сборе        |     | 1          |
| 2.           | Электронный регистратор с<br>ПО |     | 1          |
| 3.           | Датчик силы                     |     | 2          |
| 4.           | Датчик перемещения              |     | 1          |
| 5.           | Комплект захватов               |     | 1          |
| 6.           | Техническая документация        |     | 1<br>комп. |
|              |                                 |     |            |
|              |                                 |     |            |
|              |                                 |     |            |

### 4 УСТРОЙСТВО И ПРИНЦИП РАБОТЫ

- 4.1. Машина включает в себя: (см. приложение 1)
- электродвигатель 13;
- клиноременную передачу 14;
- червячный редуктор 15;
- передачу плоскозубчатым ремнем 23;
- винтовую передачу 16;
- подвижную траверсу 20;
- датчик силы (силоизмеритель) 18;
- захваты 21;
- -датчик перемещения (энкодер) 17;

От электродвигателя 13 через клиноременную передачу вращение передается на быстроходный вал червячного редуктора. При перемещении электродвигателя с плитой по опорным поверхностям каркаса привода происходит натяжение клиновых ремней. Клиноременная передача имеет передаточное отношение 1:10 (приложение 5).

Червячный редуктор встроен на левом ходовом винте.

Передачу с левого на правый ходовой винт выполняет плоскозубчатый ремень 23, который натягивается роликом 22.

Взаимодействие подвижной траверсы с ходовыми винтами происходит при помощи гаек 19. При возникновении в винтовой передаче, в результате износа осевого люфта, ослабляют крепления наружных обойм, стопорящих верхние или нижние гайки.

Поворотом гаек выбирают осевой люфт, после чего их вновь стопорят.

На правом ходовом винте сверху установлен датчик перемещения (энкодер) 17.

При испытании образцов усилие воспринимается упругим элементом датчика силы 18, преобразуется в электрический сигнал.

- 4.2. Электрооборудование.
- 4.2.1. Электрооборудование машины питается от сети переменного тока напряжением 220 В при отклонении от минус 10 до плюс 5%, и частотой  $50 \pm 1$  Гц.

Принципиальная электрическая схема машины (приложение 2) включает в себя следующие основные элементы: тиристорный электропривод; электронный регистратор с системой

силоизмерения и перемещения; систему измерения деформации; выносной пульт управления активной траверсой и передняя панель. Подробное описание шкафа управления изложено в инструкции про эксплуатации на электрошкаф.

#### 4.2.2 Тиристорный электропривод.

Блок тиристорного привода (ЭПН) обеспечивает плавное регулирование скорости электродвигателя и соответственно скорости движения активного захвата от 2 до 1000 мм/мин.

Электропривод состоит из тиристорного преобразователя и электродвигателя постоянного тока со встроенным тахогенератором.

Подробно устройство и принцип работы электропривода изложены в техническом описании и инструкции по эксплуатации устройства управления ЭПН.

### 4.2.3 Электронный регистратор.

Для управления процессом испытания, а также для отсчета и регистрации усилия, прилагаемого к испытуемому образцу и регистрации перемещения подвижной траверсы использован электронный регистратор на базе логического контроллера ПЛК.

Подробно устройство и основные возможности электронного регистратора изложены в техническом описании ЭР.

#### 4.2.4 Пульт управления (поз. 1а рис.1).

При необходимости ручного управления подвижной траверсы предусмотрен выносной пульт, с возможностью плавной регулировки скорости.

4.2.5 Передняя панель (поз. 2а рис.1) предназначена для управления питанием электрошкафа, привода и индикации работы.

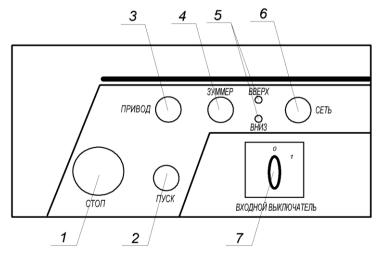



Рис.2 – Передняя панель. Общий вид

- 1 Кнопка «СТОП» выключения привода;
- 2 Кнопка «ПУСК» включения привода;
- 3 Лампа «ПРИВОД» индикация включения привода;
- 4 Звуковой извещатель о перегрузке «ЗУММЕР»;
- 5 Лампы «ВВЕРХ» и «ВНИЗ» индикация направления хода траверсы;
  - 6 Лампа «СЕТЬ» индикация включения электрошкафа;
- 7 Выключатель «ВХОДНОЙ ВЫКЛЮЧАТЕЛЬ» на два положения «0» Выкл, «1» Вкл.

#### 5 УКАЗАНИЯ МЕР БЕЗОПАСНОСТИ

- 5.1 Запрещается работать на машине лицам, незнакомым с техническим описанием данной машины.
- 5.2 Источниками опасности при работе на машине являются:
- воздействия подвижных элементов (захватов, ременных передач);
- воздействие осколков образца, возникающих при его разрушении; поражающее действие электрического тока, открытых токоведущих частей электрооборудования, находящегося под напряжением.

Вредные производственные факторы при работе на машине: вибрация, тепловыделение, пыль и т.п. - отсутствуют.

5.3 Требования и меры для обеспечения безопасности работающих на машине следующие:

от воздействия элементов и осколков образца:

- рабочая зона, включающая в себя захваты и испытуемый образец, должна быть закрыта защитной крышкой, которая должна иметь электрическую блокировку, препятствующую включению привода при поднятой крышке;
  - ременные передачи должны быть закрыты крышкой. от поражения электрическим током:
- все токоведущие элементы машины должны быть изолированы от корпуса машины и иметь необходимую величину сопротивления изоляции;

- все металлические корпуса электрических аппаратов и панелей машины должны быть соединены с основанием машины;
- на основании машины должен быть установлен болт заземления для подсоединения линии защитного заземления;
- все открытые токоведущие части электрооборудования должны быть закрыты крышками и ограждениями.
- 5.4 Проверять изоляцию следует не реже одного раза в год согласно правилам ПТЭ и ПТБ.
- 5.5 Устанавливать и снимать разрушенные образцы необходимо только после отключения привода.

#### 5.6 НЕ ДОПУСКАЕТСЯ:

-работать на незаземленной машине и компьютере!

-регулировать и настраивать машину, находящуюся под напряжением, кроме случаев, предусмотренных настоящим TO.

#### 6 ПОРЯДОК РАБОТЫ

- 6.1 Перед началом работы лаборант должен изучить:
- -Техническое описание на машину.
- -Паспорт на электрошкаф.
- -Инструкцию на электронный регистратор.
- -Руководство пользовтеля к П.О.
- -ГОСТы по которым проводятся испытания.
- 6.2 Проверить наличие заземления. Подключить машину к сети.
- 6.3 Органами управления машиной являются передняя панель шкафа управления (рис.2) пульт и ПК.

Порядок работы:

- 6.3.1 Перевести сетевой выключатель (поз.7 рис.2) в положение «1».
- 6.3.2 Подождать пока пройдет тестирование блока электронного регистратора (10-15 сек).
- 6.3.3 Кнопкой «ПУСК» (2) включить привод машины, при этом загорится лампа (3).
- 6.3.4 Пультом управления или с помощью ПК устанавливают подвижную траверсу в необходимую рабочую зону.

- 6.3.5 Установить ограничители хода траверсы в требуемое положение.
  - 6.3.6 Установить на машину необходимую оснастку.
  - 6.3.7 Установить испытуемый образец.
- 6.3.8 Сделать предварительное натяжение. На ПК сделать необходимые приготовления.
  - 6.3.9 Машина готова к испытанию.
- 6.3.10 При работе на ПК следует использовать инструкции, изложенные в «Руководстве пользователя к ПО».
- 6.3.11 После проведения испытания кнопкой «СТОП» (поз.1 рис.2) обесточить привод.
- 6.3.12 Перевести сетевой выключатель (поз.7 рис.2) в положение «0».

#### 7 ТЕХНИЧЕСКОЕ ОБСЛУЖИВАНИЕ

- 7.1 Общие требования.
- 7.1.1 При подготовке машины к работе осмотрите машину снаружи и устраните выявленные недостатки.
- 7.1.2 По окончании работы все рукоятки управления выставите в исходное положение.
- 7.2 Ежедневные работы по уходу за машиной выполняйте с целью поддержания машины в чистоте и рабочем порядке, что способствует длительной и безаварийной её эксплуатации.
- 7.2.1 Машину эксплуатируйте в лабораторном помещении, отвечающем следующим требованиям:
  - температуре окружающей среды плюс  $(20 \pm 5)$ °C:
  - относительная влажность не более 80%;
  - отсутствие загрязнённости агрессивными газами и пылью.
  - 7.2.2 Предусмотрите доступ к машине со всех сторон.
- 7.2.3 Масло в редукторе привода заменяйте по мере его загрязнения и окисления. Качество масла проверяйте через каждые 500 часов работы машины.
- 7.2.4 Ходовые винты и направляющие подвижной траверсы один раз в месяц смазывайте индустриальным маслом И-50 А или один раз в три месяца консистентной смазкой ЦИАТИМ 201 (приложение 4).

- 7.2.5 Подшипник скольжения на валу электродвигателя и подшипник скольжения на входном валу червячного редуктора привода один раз в три месяца смазывайте консистентной смазкой ЦИАТИМ 201.
  - 7.3 Профилактический осмотр.
- 7.3.1 Профилактический осмотр проводите один раз в месяц с целью проверки состояния машины и устранения мелких неисправностей.
- 7.3.2 Осмотрите снаружи всю машину, очистите поверхности от пыли и грязи и протрите их сухой мягкой салфеткой.
- 7.3.3 Проверьте и подтяните крепежные детали, проверьте натяжение плоскозубчатого и клиновых ремней привода и крепление натяжного ролика.
- 7.3.4 Проверьте наличие зазора в направляющих подвижной траверсы. Нормальное значение зазора между кронштейном 1 (приложение 1) и направляющей 2 должно быть в пределах от 0,05 0,25 мм на всем диапазоне перемещения подвижной траверсы. Если величина зазора отличается от вышеуказанных значений, произведите регулировку. Для этого выполните следующее:
- установите подвижную траверсу в одно из крайних положений напротив пазов на стойке 3;
- ослабьте винты 4 крепления кронштейна к подвижной траверсе;
- при величине зазора меньше 0,05 мм поворотом упорных винтов по часовой стрелке уменьшите зазор;
  - слегка закрепите винты 4 и проверьте величину зазора;
- если величина зазора не достигла вышеуказанных значений, ослабьте винты 4 и дополнительным поворотом упорных винтов повторите регулировку;
- установите траверсу во второе крайнее положение, проверьте зазор и при необходимости откорректируйте зазор с учетом его значения в первом положении;
  - окончательно закрепите винты 4.
- 7.3.5 После окончания работы обесточьте машину, очистите от пыли и грязи и закройте чехлом.

#### 8 ПОРЯДОК УСТАНОВКИ

- 8.1 Извлеките составные части машины, футляры и документацию из транспортной тары, осмотрите их, проверьте комплектность поставки согласно «РМ 5.2054.12.01. ПС».
- 8.2 После извлечения машины из транспортной тары доставьте её на место эксплуатации, используя транспортные средства грузоподъемностью не менее 500 кг.

При транспортировании машины с помощью погрузчика выполните следующее:

- снимите крышку с верхней траверсы;
- произведите строповку машины согласно приложению 6, установив под транспортные тросы войлочные прокладки для предохранения лакокрасочных покрытий;
- поднимите машину и установите под основание ее два бруса, поперечное сечение которых обеспечивает проход опорных элементов погрузчика;
- опустите машину на брусья. При транспортировании машины с помощью других подъемно-транспортных средств устанавливайте её согласно приложению 5.

Шкаф управления машины транспортируйте, используя подъемно-транспортные средства грузоподъемностью не менее 200 кг.

- 8.3 Удалите антикоррозийную смазку с законсервированных поверхностей и элементов машины ветошью, смоченной бензином-растворителем, и протрите насухо.
- 8.4 Установите машину на виброопоры на пол в сухом отапливаемом помещении с температурой воздуха от +15 до +30 °C, изолированном от проникновения вредно действующих паров и газов.
- 8.5 Установите машину по уровню с базой по опорной поверхности цокольной плиты привода (или по отвесу).
- 8.6 Подключите машину к сети переменного однофазного тока напряжением 220 В при отклонении от минус 10 до плюс 5% и частотой  $50 \pm 1$  Гц.

#### 9 МЕТОДЫ И СРЕДСТВА ПОВЕРКИ

Учитывая специфику данной машины, в разделе изложены особенности ее поверки.

9.1. Операции и средства поверки.

При проведении поверки следует выполнять операции и применять средства поверки, указанные в табл.1.

Поверка обязательна при выпуске из производства, ремонте, эксплуатации и хранении.

Таблица 1.

| Наименование операции                                                                                                                             | Номера<br>пунктов | Наименование образцового средства измерений или вспомогательного средства поверки; номер документа, регламентирующего технические требования к средству; разряд по государственной поверочной схеме и (или) метрологические и (или) основные технические характеристики |
|---------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1. Внешний осмотр машины                                                                                                                          | 1 .3.1            | Визуально                                                                                                                                                                                                                                                               |
| 2. Опробование                                                                                                                                    | 1 .3.2            | Меры сил, изготовленные по нормам точности гирь 3 разряда ГОСТ 7328-82.                                                                                                                                                                                                 |
| 3. Определение погрешности, размаха показаний и разности показаний силоизмерителя между прямым и обратным ходами.                                 | 1 .3.3            | Образцовые динамометры третьего разряда ДОР-1,ДОСМ-3-0,2, ДОСМ-1 ГОСТ 9500-84. Штангенциркуль ШЦ-П-250-0,05 ГОСТ 166-80.                                                                                                                                                |
| 4. Проверка скорости рабочего и обратного ходов активного захвата 5. Определение абсолютной погреш-ности измерителя перемещения активного захвата | 1 .3.4.           | Секундомер СОПпр-2б-2-000 ГОСТ 5072-79                                                                                                                                                                                                                                  |
| Juadutu                                                                                                                                           |                   | Штангенрейсмасс ШР-1000-0,1 ГОСТ 164-80                                                                                                                                                                                                                                 |
|                                                                                                                                                   |                   | Индикатор часового типа ИЧ-50 ТУ2-<br>034-611-80, штатив ШМ-П-8-8                                                                                                                                                                                                       |

**Примечание.** Допускается использование других средств измерения, имеющих аналогичные технические характеристики.

- 9.1.1. Периодичность поверки машины не реже одного раза в год.
  - 9.2. Условия поверки и подготовка к ней.

При проведении поверки необходимо соблюдать следующие условия:

- температура окружающей среды плюс  $(25 \pm 10)^0$  C;
- относительная влажность воздуха от 45 до 80%;
- атмосферное давление от 84 до 106 кПа.

В месте установки машины должны отсутствовать источники вибрации, магнитные и электрические поля. Машина, шкаф управления и компьютер должны быть заземлены!

Перед поверкой метрологических параметров поверяемая система должна находиться во включенном состоянии не менее 30 мин.

- 9.3. Проведение поверки.
- 9.3.1. Внешний осмотр.

При проведении внешнего осмотра установить соответствие машины следующим требова6ниям:

- наличие маркировки, содержащей изображение товарного знака, обозначение машины, год и месяц выпуска;
- отсутствие коррозии на ходовых винтах, направляющих и других узлах;
  - наличие масла в редукторе привода.
  - 9.3.2. Опробование.

При опробовании машины необходимо выполнить операции по п. 5. а также:

- снять захваты;
- установить подвижную траверсу в положение, обеспечивающее возможность размещения поддона для грузов или реверсора;
- установить вместо захвата на тягу силоизмерителя (СИ) реверсор (диапазон от 500 H до 5000H), реверсор закрепить также на подвижной траверсе;
  - установить на реверсор динамометр;
- с помощью ПК выбрать соответствующий канал измерений, скорость передвижения подвижной траверсы установить в пределах 0,5 -1,0 мм/мин;
- проверить с помощью подвижной тяги срабатывание аварийных выключателей;
- нагрузить силоизмеритель до верхнего предела диапазона измерений и выдержать под нагрузкой 5мин;

- после 5мин выдержки очень осторожно при скорости  $0,1\div0,2$ мм/мин нагрузить СИ до значения превышающего верхний предел диапазона на  $1\div5\%$ , этим проверить автоматическое отключение машины при перегрузках;
- разгрузить машину, при нагружении и разгружении следить за плавностью хода подвижной траверсы, работой силового привода;
- после разгружения СИ проверить показания отсчётных устройств динамометра и блока ЭР с помощью ПК, при необходимости произвести корректировку «0».
- 9.3.3. Погрешность силоизмерителя, размах и разность показаний между прямым и обратным ходами определять динамометрами ДОСМ-3-0,2 и ДОСМ-1. Проверку проводить в точках 10; 20; 60 и 100% от верхнего предела каждого диапазона путём трёхкратного нагружения и разгружения силоизмерителей.

Относительную погрешность показаний силоизмерителя на каждой ступени нагружения, начиная с 0,2 от верхнего предела каждого диапазона измерения, определять по формуле (1).

$$\Delta = \Delta P / P_{H} \cdot 100 , (1)$$

где  $\Delta$  – относительная погрешность силоизмерителя в %;

 $\Delta P$  — разность между средним из трёх результатов измерения нагрузки в проверяемой точке и её действительным значением в H;

Р<sub>н</sub> – действительное значение нагрузки в Н.

Приведенную погрешность показаний силоизмерителя на каждой ступени нагружения при нагрузке менее 0,2 от наибольшего предельного значения диапазона измерения по п. определять по формуле (2).

$$\Delta_1 = \Delta P / P_{\pi} \cdot 100$$
, (2)

где  $\Delta_1$  – приведенная погрешность силоизмерителя в %;  $P_n$  – предельное значение нагрузки в H.

Размах показаний силоизмерителя на каждой ступени нагружения, начиная с 0.2 от верхнего предела каждого диапазона измерения, определять по формуле (3).

$$V = (P_{\text{max}} - P_{\text{min}}) / P_{\text{H}} \cdot 100$$
 (3)

где V – размах показаний силоизмерителя в %;

в Н:

P<sub>max</sub> – наибольший из трех результатов измерения нагрузки

 $P_{min}$  — наименьший из трех результатов измерения нагрузки в H.

Размах показаний силоизмерителя на каждой ступени нагружения при нагрузке менее 0,2 от наибольшего предельного значения диапазона измерения, определять по формуле (4).

$$V_1 = (P_{max} - P_{min})/P_{\pi} \cdot 100$$
 (4)

где  $V_1$  – размах показаний силоизмерителя в %.

Разность показаний силоизмерителя на каждой ступени нагружения, начиная с 0,2 от верхнего предела каждого диапазона измерения определять по формуле (5).

$$\Psi = P_R / P_H \cdot 100, (5)$$

где  $\Psi$  — относительная величина разности показаний силоизмерителя мехду прямым и обратным ходами в %;

 $P_R$  — величина разности между средними арифметическими из трех результатов измерения нагружении и разгружении в H.

Разность показаний силоизмерителя на каждой ступени нагружения при нагрузке менее 0,2 от наибольшего предельного значения диапазона измерения определять по формуле (6).

$$\Psi_1 = P_R / P_{\pi} \cdot 100 \tag{6}$$

где  $\Psi_1$  — относительная величина разности показаний силоизмерителя между прямым и обратным ходами в %.

9.3.4. Скорость и погрешность измерителя скорости рабочего и обратного ходов активного захвата проверять косвенным методом, измеряя расстояние, пройденное активным захватом за определённое время. Расстояние измерять с помощью отсчётного устройства (измерителя перемещения активного захвата), время фиксировать по секундомеру СОПпр-26-2-000 ГОСТ 5072-79.

Проверку проводить в точках, соответствующих 10, 50 и 100% от верхнего предела каждого диапазона. Время измерения должно быть не менее 60с.

Погрешность измерителя скорости определять по формуле (9).

$$\Delta V = (V - S.60 : t) : V$$
, (9)

где  $\Delta V$  – погрешность измерителя скорости в %;

- S действительное расстояние, пройденное активным захватом, в мм;
  - t- время прохождения активным захватом расстояния S в c; V- показания измерителя скорости в мм/мин.

Значение погрешности измерителя скорости не должно превышать значений указанных в п. 2.5.

9.3.5. Определение абсолютной погрешности измерителя перемещения активного захвата.

В диапазоне измерений от 0 до 50 мм используют индикатор ИЧ-50 установленый в штатив ШМ-П-8-8.

В диапазоне измерений от 50 до 500 мм используют штангенрейсмас ШР-1000-0,1 ГОСТ 164-80, который установлен на разметочной плите, которая установлена перед машиной и выверена в двух плоскостях с точностью  $\pm 1$  при помощи уровня.

Измерение погрешности проводят в точках (10, 20, 50, 80, 100) % диапазона измерений при прямом ходе.

Абсолютную погрешность определять как разность между показаниями измерителя перемещения активного захвата и действительным значением измеряемой величины. Погрешность измерителя перемещения активного захвата не должна превышать норм, указанных в п. 2.12.

- 9 .4. Оформление результатов проверки.
- 9.4.1. На машины, прошедшие государственную проверку с положительными результатами, выдается свидетельство по форме, установленной Госстандартом.
- 9.4.2. Результаты ведомственной проверки оформляют в порядке, установленном ведомственной метрологической службой.
- 9.4.3. При отрицательных результатах поверки машины к применению не допускаются.

## приложения

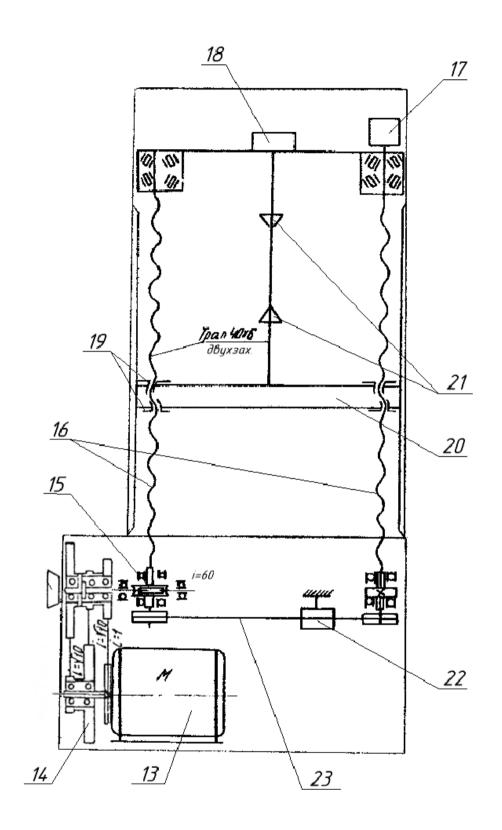



Рисунок 1 – Кинематическая схема машины

#### ПРИЛОЖЕНИЕ 2

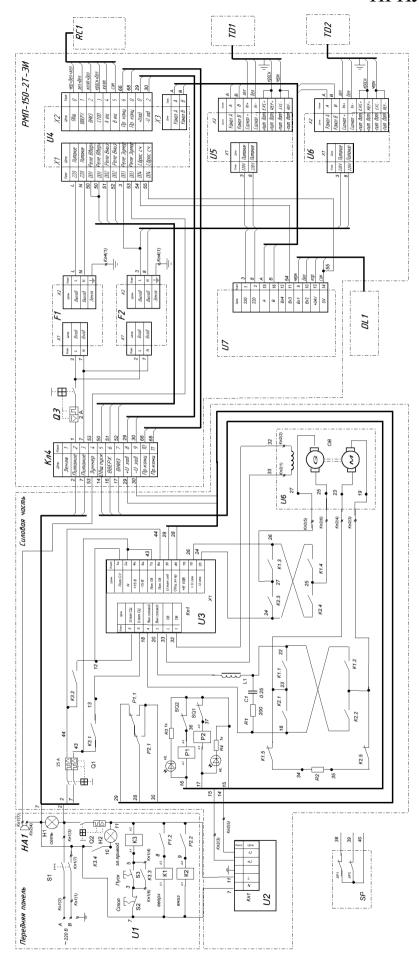
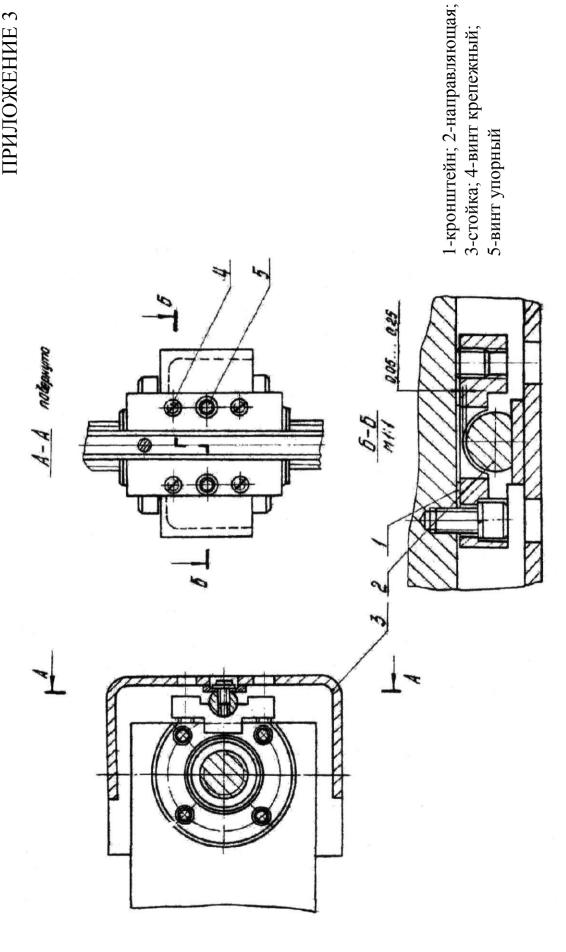




Рисунок 1 – Схема электрическая принципиальная ИР 5046-0,5

## Перечень комплектующих элементов и блоков

| №   | Обозн.    | Наименование                                 | Кол. | Тип                                                                      |
|-----|-----------|----------------------------------------------|------|--------------------------------------------------------------------------|
| 1.  | U1        | Панель управления                            | 1    |                                                                          |
| 2.  | S1        | Перекл. пакетный (кулачковый)                | 1    | E9-32A 3P 0-1 ACKO                                                       |
| 3.  | Q1        | Однофазный автомат                           | 1    | ВА 76-29-1 C2 АГИЕ.641235.003 I <sub>н</sub> =16A, U <sub>p</sub> =220B  |
| 4.  | Q2        | Двухфазный автомат                           | 1    | BA 76-29-2 C16 AГИЕ.641235.003 I <sub>н</sub> =16A, U <sub>p</sub> =220B |
| 5.  | Q3        | Однофазный автомат                           | 1    | e.mcb.45.1-C2 I <sub>H</sub> =2A, U <sub>p</sub> =220B                   |
| 6.  | F1, F2    | БСФ Д2-0,6                                   | 2    | Сетевой фильтр                                                           |
| 7.  | H1        | Сигнальная лампочка «Привод»                 | 1    | 8LP2T ILM3 (зеленая) U <sub>ни</sub> =220В                               |
| 8.  | H2        | Сигнальная лампочка «Сеть»                   | 1    | 8LP2T ILM4 (красная) U <sub>ни</sub> =220В                               |
| 9.  | HA1       | Elfin 020SA22                                | 1    | Зуммер, U <sub>p</sub> =220В                                             |
| 10. | HL1-HL2   | Светодиод с держателем СРИ                   | 2    | L-608R красные                                                           |
| 11. | K1,K2     | Реверсивные пускатели U <sub>упр</sub> =220В | 2    | ПМЛ 1561ДМ I <sub>н</sub> =10A, U <sub>p</sub> =380В                     |
| 12. | ОПН       | Ограничитель перенапряжения                  | 2    | ОПН-123 U <sub>p</sub> =220В                                             |
| 13. | К3        | Пускатель сетевой U <sub>упр</sub> =220В     | 1    | ПМЛ 2160 ДМ I <sub>н</sub> =25A, U <sub>p</sub> =380B                    |
| 14. | R9,R10    | Сопротивление балластное                     | 2    | МЛТ 0,25 47 кОм                                                          |
| 15. | RC1       | Пульт управления                             | 1    |                                                                          |
| 16. | U3        | Привод двигателя                             | 1    | ЭПН                                                                      |
| 17. | Кл1, Кл3  | Клем. соединения на 10                       | 2    | 3H19-21312 ОЗУ2 I <sub>н</sub> =10A U <sub>p</sub> =660В                 |
| 18. | Кл2       | Клем. соединения на 5                        | 1    | 3H19-21312 ОЗУ2 I <sub>н</sub> =20A U <sub>p</sub> =660В                 |
| 19. | Кл4       | Наборные клеммы                              | 11   | WK2,5 I <sub>H</sub> =20A U <sub>p</sub> =220B                           |
| 20. | S3        | Кнопка «Пуск»                                | 1    | КЕО-11 УЗ исп 3 н.о                                                      |
| 21. | S2        | Кнопка «Стоп»                                | 1    | КЕО-11 УЗ исп 2 н.з                                                      |
| 22. | M         | Мотор                                        | 1    | ПБСТ 33У4 Р=1,6 кВт N=1500 об/мин                                        |
| 23. | R2        | Тормозной резистор                           | 1    | ПЭВ 20-10 Ом                                                             |
| 24. | SQ SP     | Концевые выключатели                         | 4    | МП2102У4                                                                 |
| 25. | R1        | Резистор                                     | 1    | ПЭВ 10-200 Ом                                                            |
| 26. | C1        | Конденсатор                                  | 1    | МБГЧ-1 1,0 мкФ 400 В                                                     |
| 27. | U4        | ПЛК-150-220 УМ                               | 1    | Программируемый логический контроллер                                    |
| 28. | U5, U6    | МВ 110-224.1ТД                               | 2    | Модуль ввода сигналов тензодатчиков                                      |
| 29. | <b>U7</b> | СИ-30                                        | 1    | Счетчик импульсов                                                        |
| 30. | TD1       | Zemic H3-C3-50kg                             | 1    | тензодатчик на 50 кг                                                     |
| 31. | TD2       | Zemic H3-C3-500kg                            | 1    | тензодатчик на 500 кг                                                    |
| 32. | DL1       | Autonics E40S8-600                           | 1    | датчик перемещения                                                       |



направления подвижной траверсы Рисунок 1 - Устройство для

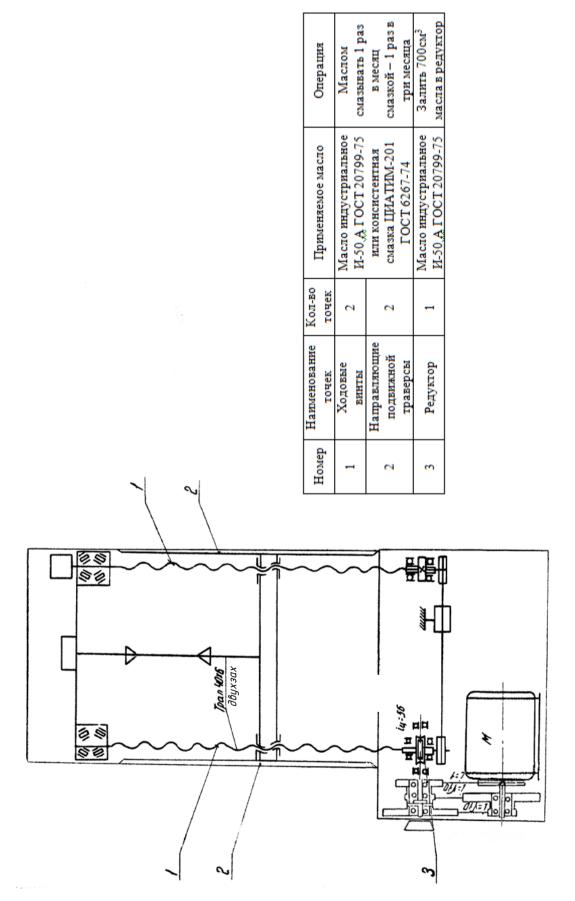



Рисунок 1 – Схема смазки машины

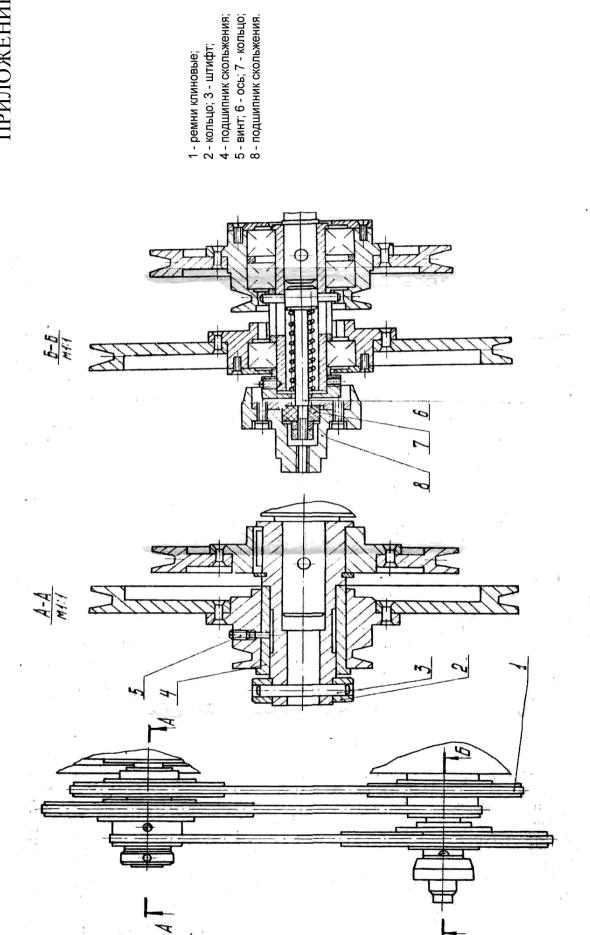



Рисунок 1 – Клиноременная передача привода

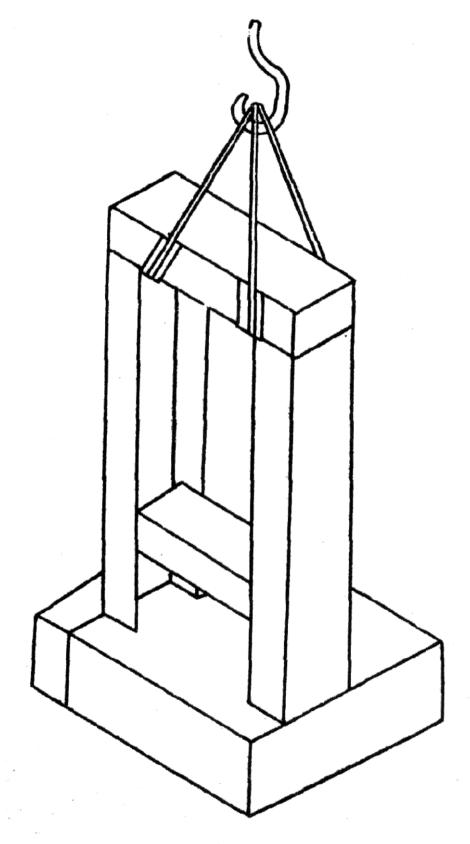



Рисунок 1 – Схема строповки машины